Considerations for design

- RCT remains the gold standard
- n-of-1 design: this is a sequence of different treatments in one and the same patient.
 - Has the feel of cross-over design
 - Question: how does that work in oncology?
- Play with the type I error (or even type II error). For example:
 - One sided testing: can be acceptable
 - Higher type I error (alpha): this will never be found, because the trial will not be repeated
 - More optimistic alternative hypothesis: this has the same practical effect as increasing the type II error (beta): only a really strong improvement has good chances of being identified. Look more at the confidence interval.
Considerations for design

- Single-arm/non-comparative approaches
- The fact of having some responses is an improvement in itself
- The fact of stopping progression is an improvement in itself
- Robust historical data is available with small between trial variability (not likely, but happens)
There is no current standard ...

I would then (still) suggest a randomized approach with either a Phase II selection design, or a play-the-winner (adaptive randomization) approach.

Other cases:

• Maybe it is worthwhile to incorporate in the plans a trial / decision point where disagreement is settled.

• If the standard is wait-and-see, that can be randomized against.
Example of evolution: how we see Phase II trials

- Trying to improve the Positive Predictive Value
- Accommodate many objectives: moving to an amalgam of approaches

Seymour et al. CCR 2010
Suggestion

• When there are less patients ... then per patient more information needs to be collected

• Patient as their own control:
 ▪ Make trials where patients are followed much longer, following patients and their consecutive treatments ‘forever’. (Similar to n-of-1 approach)
 ▪ Obtain detailed information of disease evolution (e.g. tumor measurements) pre-treatment. Because rare cancer trials are done in specialized hospitals, this may be achievable. Can give much more info than e.g. usual RECIST (which has 1 baseline).
Alternative endpoints

• Continuous endpoint of change in tumor size
 ▪ Instead of binary response
 Karrison et al, Design of Phase II Cancer Trials Using a Continuous Endpoint of Change in Tumor Size: Application to a Study of Sorafenib and Erlotinib in Non–Small-Cell Lung Cancer, JNCI, 2007
 Wason et al, Reducing sample sizes in two-stage phase II cancer trials by using continuous tumour shrinkage end-points, EJC, 2011

• “Growth modulation index”: ratio of time to progression under previous treatment relative to time to progression under new treatment
 ▪ Paired failure-times within each treated patient
 Mick et al, Phase II clinical trial design for noncytotoxic anticancer agents for which time to disease progression is the primary endpoint, CCT, 2000
Suggestion (continued)

- Consider drawing from other cancer types with similar expression of genetic damage
 - EMA guidance: “... For example, in studies investigating the activity of a compound targeting a specific, molecularly well-defined structure assumed to be pivotal for the condition(s), it might be possible to enrol patients with formally different histological diagnosis, but expressing this target. ...”
Suggestion (continued)

• Make more use of interim testing (or adaptive designs)
 - Usually in rare cancer types accrual is somewhat slower/longer, so more information on the enrolled patients is available at time of interim analysis, as compared to quickly enrolling trials
 - Any predefined plan of taking decisions can be investigated for its operating characteristics
Alternative designs

• Cross-over design
 - Paired failure-times within each treated patient
 - Underlying assumptions for carrying out such studies almost never valid in cancer studies (carry-over effect)

• 3-stage design

Honkanen, A three-stage clinical trial design for rare disorders, SiM, 2001
From Gupta et al.
Acknowledgements

• Consensus notes from Gynecologic Cancer Intergroup Harmonization Committee, Statistical Subcommittee (ASCO 2011, Jim Paul et al.)
• Catherine Fortpied
Reading

• A framework for applying unfamiliar trial designs in studies of rare diseases, S. Gupta et al., Journal of Clinical Epidemiology 2011
• Clinical trials and rare diseases, S. Lagakos, NEJM editorial 2007
• Trials in rare diseases: the need to think differently, Billingham et al. Trials 2011
• Evidence-Based Medicine for Rare Diseases: Implications for Data Interpretation and Clinical Trial Design, Behera et al. Cancer Control 2007
Back-Up
Looking for new common ground

• Trials with a high level of patient startup work
 ▪ Screening many to obtain some eligible patients
 ▪ Splitting according to markers
 ▪ High workload to include patients
 ▪ Timelines to enter a patient

• Think about:
 ▪ Trials spanning several phases of development
 ▪ Trials with multiple additional analyses / endpoints
 ▪ TR analysis and planning of such analysis
 ▪ Biobanking
 ▪ Tools to perform complex logistics
Buzzword: Adaptive designs

• We are learning to plan and run these complicated trials in an acceptable way
 ▪ Appropriate use of IDMC
 ▪ Appropriate use of adaptive elements in the design
• Word of warning: adaptive designs are not the solution to manage the unexpected. But adaptive elements can be very interesting to manage the complicated.
• We are already using many adaptive ideas in our trials (all phases).
• Keys here are: think and discuss upfront and monitor during the trial
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Regulatory Evidence</th>
<th>Study Design</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td>Clinical benefit</td>
<td>Randomized</td>
<td>Direct measure of benefit, easy, precise</td>
<td>Large studies, crossover / followup Tx affects, noncancer deaths</td>
</tr>
<tr>
<td>Symptoms</td>
<td>Clinical benefit</td>
<td>Randomized, blinded</td>
<td>Patient perspective of direct clinical benefit</td>
<td>Blinding hard, missing data, clinically relevant effect, validated tools lacking</td>
</tr>
<tr>
<td>DFS</td>
<td>Surrogate</td>
<td>Randomized, blinded, blinded review</td>
<td>Smaller, shorter</td>
<td>Not stat. validated as surrogate for OS / not precise, open to bias / many definitions</td>
</tr>
<tr>
<td>RR</td>
<td>Surrogate</td>
<td>Blinded, blinded review</td>
<td>1-arm possible, smaller, shorter, attributable to drug</td>
<td>No direct measure of benefit / no comprehensive measure of drug activity / only subset of benefiting pats.</td>
</tr>
<tr>
<td>CRR</td>
<td>Surrogate</td>
<td>Blinded, blinded review</td>
<td>1-arm possible, smaller, shorter, durable CR = benefit</td>
<td>No direct measure of benefit / no comprehensive measure of drug activity / small subset of benefiting pats.</td>
</tr>
<tr>
<td>PFS</td>
<td>Surrogate</td>
<td>Randomized, blinded, blinded review</td>
<td>Smaller, shorter, SD included, crossover / other Tx not affecting, objective & quantitative</td>
<td>Not stat. validated as surrogate for OS / not precise, open to bias / many definitions / frequent assessments / need to balance timing x arms</td>
</tr>
</tbody>
</table>
Evolution of endpoints leading to EMA oncology approvals

Per F Pignatti presentation at EORTC advanced course, September 2010
Alternative designs (cont’d)

• Bayesian design, formally incorporating historical data into the design
 - Involve prior beliefs which may not be universally accepted
 - If we conduct a small trial, the choice of the prior may carry heavy weight